Delineation of disease phenotypes associated with esophageal adenocarcinoma by MALDI-IMS-MS analysis of serum N-linked glycans.

نویسندگان

  • M M Gaye
  • T Ding
  • H Shion
  • A Hussein
  • Y Hu
  • S Zhou
  • Z T Hammoud
  • B K Lavine
  • Y Mechref
  • J C Gebler
  • D E Clemmer
چکیده

N-Linked glycans, extracted from patient sera and healthy control individuals, are analyzed by Matrix-assisted laser desorption ionization (MALDI) in combination with ion mobility spectrometry (IMS), mass spectrometry (MS) and pattern recognition methods. MALDI-IMS-MS data were collected in duplicate for 58 serum samples obtained from individuals diagnosed with Barrett's esophagus (BE, 14 patients), high-grade dysplasia (HGD, 7 patients), esophageal adenocarcinoma (EAC, 20 patients) and disease-free control (NC, 17 individuals). A combined mobility distribution of 9 N-linked glycans is established for 90 MALDI-IMS-MS spectra (training set) and analyzed using a genetic algorithm for feature selection and classification. Two models for phenotype delineation are subsequently developed and as a result, the four phenotypes (BE, HGD, EAC and NC) are unequivocally differentiated. Next, the two models are tested against 26 blind measurements. Interestingly, these models allowed for the correct phenotype prediction of as many as 20 blinds. Although applied to a limited number of blind samples, this methodology appears promising as a means of discovering molecules from serum that may have capabilities as markers of disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ion mobility-mass spectrometry analysis of serum N-linked glycans from esophageal adenocarcinoma phenotypes.

Three disease phenotypes, Barrett's esophagus (BE), high-grade dysplasia (HGD), esophageal adenocarcinoma (EAC), and a set of normal control (NC) serum samples are examined using a combination of ion mobility spectrometry (IMS), mass spectrometry (MS), and principal component analysis (PCA) techniques. Samples from a total of 136 individuals were examined, including 7 characterized as BE, 12 as...

متن کامل

Delineating diseases by IMS-MS profiling of serum N-linked glycans.

Altered branching and aberrant expression of N-linked glycans is known to be associated with disease states such as cancer. However, the complexity of determining such variations hinders the development of specific glycomic approaches for assessing disease states. Here, we examine a combination of ion mobility spectrometry (IMS) and mass spectrometry (MS) measurements, with principal component ...

متن کامل

MALDI Imaging Mass Spectrometry Profiling of N-Glycans in Formalin-Fixed Paraffin Embedded Clinical Tissue Blocks and Tissue Microarrays

A recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) method to spatially profile the location and distribution of multiple N-linked glycan species in frozen tissues has been extended and improved for the direct analysis of glycans in clinically derived formalin-fixed paraffin-embedded (FFPE) tissues. Formalin-fixed tissues from normal mouse kidn...

متن کامل

Two-Dimensional N-Glycan Distribution Mapping of Hepatocellular Carcinoma Tissues by MALDI-Imaging Mass Spectrometry

A new mass spectrometry imaging approach to simultaneously map the two-dimensional distribution of N-glycans in tissues has been recently developed. The method uses Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry (MALDI-IMS) to spatially profile the location and distribution of multiple N-linked glycan species released by peptide N-glycosidase F in frozen or formalin-fixed...

متن کامل

Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry

A new matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) method to spatially profile the location and distribution of multiple N-linked glycan species in tissues is described. Application of an endoglycosidase, peptide N-glycosidase F (PNGaseF), directly on tissues followed by incubation releases N-linked glycan species amenable to detection by MALDI-IMS. The meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 142 9  شماره 

صفحات  -

تاریخ انتشار 2017